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Abstract
In this work we set up a model aimed at the calculation of three-hole features like the ones due
to core–valence–valence Auger decays following Coster–Kronig transitions. While several
experiments made in the 1970s and in the 1990s on the Auger core–valence–valence spectra of
transition metals showed the existence of these structures, a theory able to explain and predict
them is still missing today. Our model is grounded on the one-step approach, but the use of a
valence band fully below the Fermi level allows us to treat our calculations in a three-step
approach, so keeping complications to a minimum in this exploratory work. The Hamiltonian of
the system is placed in an Anderson-like picture and the spectra are computed by evaluating a
three-body Green function. Within our model we arrive at a simple and closed formula covering
the whole range between weak and strong correlations. We find that, in general, the satellites
cover separated spectral regions with three-hole multiplets, shifted and broadened two-hole
features and distorted band-like continua.

1. Introduction

Coster–Kronig satellites leading to three-hole final states have
so far been considered as a mere background in the measured
photoemission and Auger spectra. This is due mainly to both
experimental and theoretical difficulties. Among the former a
dominant role has been played by problems in isolating the
signal coming from this kind of transition from that of the
other superimposing parent Auger decay. Another source of
difficulties was the theoretical hardship in finding a recipe
for calculating an interacting three-particle Green function.
Notwithstanding the fact that the study of such satellites is
very interesting because they are due to strongly correlated
effects in highly excited states, they also represent a real mine
of information about strongly correlated materials.

In this work we address in particular the L2–L2L3M4,5

–M4,5M4,5(M4,5) processes from transition metals or else
a transition started with a 2p1/2 core hole which decays
through a first Coster–Kronig (CK) transition, L2–L3M4,5, and
then through a core–valence–valence (CVV) Auger process,
L3(M4,5)–M4,5M4,5(M4,5), in the presence of a spectator hole
in the 3d valence band, (M4,5). The theory here presented,
however, holds general for M–MMN–NNN and many other
kinds of CK preceded Auger decay.

Such satellites were isolated for the first time in the
1980s [1] thanks to the use of the Auger-photoelectron
coincidence spectroscopy (APECS), then in later experiments
they were more extensively measured in several first-row
transition elements [2–5]. In the 1990s Thurgate and co-
workers [4, 5] measured the APECS spectra of Ni, Fe,
Co and Ga, where they isolated and observed intense
L2–L2L3M4,5–M4,5M4,5(M4,5) satellites in all cases except Ga
and their line shapes were found to show a sort of atomic-
like or band-like shape phenomenology recalling to the mind
that of the two-hole Auger line shapes of the Cini–Sawatzky
theory [6–8]. The model we set up is able to explain this
different kind of behavior, predicting also some features that
are completely new. The mechanism at the heart of our
method is tightly related to the breaking of the independent
particle picture for the description of the sample valence
hole. We suspect in fact that to observe the three-hole peak
phenomenology, typical of that kind of CK transition we are
interested in, a key role must be played by an interplay between
kinetic and potential energy or else by the competition between
valence hole delocalization and the L3M4,5–M4,5M4,5(M4,5)

decay. Its result, in the case of any narrowing of the line
shape, will be a fingerprint of correlation effects. As will be
described in full detail in the following sections, the origin of
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this behavior must come in fact from processes started with
a local M spectator hole due to the early decay of the L3 hole
before M escapes and probably the localization of the spectator
hole is due to the fact that it is bound in a two-hole resonance.

This paper is organized as follows: in section 2 our
model will be presented, while in section 3 an application
of this approach to the rectangular band case for an initial
monodeterminantal state, |4 F〉, will be shown. Finally, some
conclusions will be drawn in section 4.

2. The model

The presence of any narrowing in the final three-hole line
shape of CK preceded Auger satellites reveals, as we said
before, a clear footmark of the breaking of the independent
particle picture of M holes. If an independent particle picture of
valence states were valid, in fact one should predict that there
is ample time for the M spectator hole to delocalize before
the L3 hole decays, since the valence bandwidth is expected
to be much larger than the L3 core-level width3. In this case,
the influence of a far-away spectator should be negligible and
one should observe a normal L3VV decay initiated by the L2

hole. There should be no reason to expect any narrowing of
the satellite line shape, but on the contrary one would predict
a broadening due to a convolution with the L2 photoemission
peak. Any deviation from this result as observed in Co and
Ni [4, 5] must come from processes starting with a local M4,5

spectator hole during the Auger decay of the L3 hole, before
the M4,5 hole escapes and/or binds to a resonance. For the
reasons above, we expect that two-hole resonances must be
involved in keeping the spectator hole on-site. The intensity
of this three-hole satellite should be computed in terms of the
probability of decay in the presence of a localized spectator.
Then, the probability that the (M4,5) hole sticks on-site may be
estimated as the intensity of the split-off peak of the L3M4,5

resonance. Probably because this intensity vanishes or is small
unless the hole–hole interaction U is comparable with the
bandwidth, one should see no change at all compared to the
L3M4,5M4,5 line shape unless we are quite close to the atomic-
like limit. In the light of the above discussion, we argue that
not only the (M4,5) hole is unscreened but it is localized in
a two-hole resonance with high probability, a property which
requires strong correlation. Besides this the same spectral
region should also contain intensity arising from the band-like
part of the L3M4,5 resonance and contributing with a normal
L3MM feature that will exhibit no narrowing and will tend to
broaden the sharp features.

The total Hamiltonian of our problem can be decomposed
as:

H = ˜H + HA + TA + Tp (1)

where the Coulomb interaction operator responsible for the
Auger transitions, HA, can be written also singling out CK
and CVV contributions and disregarding all the possible
contributions of other decay channels: HA = H (CK)

A + H (CVV)
A .

In this picture H (CK)
A produces the CK precursor decay, and

H (CVV)
A represents the following CVV Auger decays leading us

3 Data on core-level widths are not available, but they would be useful.

to our three-hole final state. TA and Tp are instead, respectively,
the Auger electron and the photoelectron kinetic energies. The
dynamics of the system with no Auger transitions are included
in all the remaining terms making up the rest of H , ˜H .

For the sake of simplicity we develop our model in what
we call a ‘three-step approach’ [9]. Its physical meaning can be
easily understood by writing down its expression for the Auger
current, which can be obtained by extending the one-step
approach given by Gunnarsson and Schönhammer [10] to the
case with two emitted Auger electrons, where the first Auger
electron is not detected. The expression corresponding to the
three-step approach is obtained this way but neglecting virtual
transitions, the mixing with other channels and all the possible
intermediate excited states of L3M. This tells us that by using
this approximation we are treating the initial photoemission
and the two following Auger decays as three-distinct processes
not interfering one with the other. In this picture we can restrict
ourselves to consider only the three holes that effectively take
part in the process analyzed, discarding all the other target
passive holes.

The Auger spectrum up to a constant is given by:

S(ω) = −Im Tr[M†(ω)�(ω)M(ω)] (2)

where M is the Auger matrix and � is the interacting three-
hole Green function which can be written within the three-step
approach as:

�α1,α2,α3;β1,β2,β3(z) = 〈0|cα3 cα2 cα1

1

z − H
c†
β1

c†
β2

c†
β3

|0〉 (3)

where the α and the β represent single-particle spin–orbital
states on the valence shell of the Auger site (local atom),
the average is over the vacuum state and H is the total
Hamiltonian.

To evaluate (3) we assume an Anderson-like approach, so
our Hamiltonian is reduced to:

H = Hat + HS + V (4)

where Hat and HS are, respectively, the terms describing
the target atom and the remaining solid, while V accounts
for one-body hopping between the atom and the solid.
The Hamiltonian representing the solid is modeled as:
HS = ∑

α

∑

k εkαc†
kαckα , while to calculate V we assume

that a hole in the atomic state α can only hop into
the corresponding continuum of states {kα}. This means
that: V = ∑

α

∑

k Vkα(c†
kαcα + c†

αckα). The atomic
Hamiltonian is given instead by the sum: Hat = H (0)

at +
HC , in which H (0)

at = ∑

α εαc†
αcα is the one-body term,

and HC = ∑

α1α2α3α4
Uα1α2α3α4 c†

α1
c†
α2

cα4 cα3 is the screened
Coulomb repulsion.

The Hilbert space of our system is made up of four
different kind of states which are: our final three-hole state,
all the two-hole states that can be reached from this last one
emitting one hole in the continuum, all the single-hole states
that can be reached from the initial three-hole one setting free
this time two electrons and, finally, a state in which all the
holes present in the final state of the considered process are
free. So once we have identified the final three-hole states of

2
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our system, we can build the Hilbert space of our problem.
Then projecting a Dyson-like equation on this space we can get
the following system of coupled equations, which are closed
thanks to the hypothesis of closed bands and represent the exact
solution of our problem:

� = �(0) + �(0)U � +
∑

k

�0
kU �k

�k = �
(0)

k + �
(0)

k U � +
∑

p

�
(0)

k,pU �p

(5)

where the underlined quantities are matrices or else they are the
corresponding operators, ̂�(ω) = 1

ω−H+iδ , ̂�0(ω) = 1
ω−H0+iδ

(with H0 = H −HC) and HC , projected on the Hilbert space of
the treated transition. In particular � and �(0) are, respectively,
the interacting and non-interacting three-hole Green function
projected on localized on-site three-hole final states. �k and
�

(0)
k are respectively the operators ̂� and ̂�0 closed between a

localized three-hole state and a localized two-hole one with a
free hole characterized by a momentum k. �

(0)

k,p is again ̂�(0)

but closed this time between two localized two-hole states.

3. The 4F and the rectangular band case

As a first simple application of this model we restrict our
analysis to consider the case of a single monodeterminantal
three-hole final state, the 4F, which can be written in the three-
step approach as c+

ml =0c+
ml =1c+

ml =2|0〉. The atomic Hamiltonian
is the sum of:

H (0)
at =

2
∑

mli =−2

εmli
c†

mli
cmli

;

HC =
∑

ml1 +ml2 =ml3 +ml4

Uml1 ml2 ml3 ml4
c†

ml1
c†

ml2
cml4

cml3
.

(6)

To further simplify our analysis we restrict ourselves to
degenerate atomic levels, εmli

= ε0 for all i , and to hopping
integrals independent of the magnetic quantum number mli ,
Vkmli

= Vk . In this case the two-hole states of the Hilbert
space of the system are given not only by all the possible
four states obtained setting free one electron from the |4 F〉,
{|i, k〉} = {|mlp↑, mlq ↑, mlr k↑} (mlp,q,r = 0, 1, 2), but also
by c+

ml =2,kc+
ml =−1c+

ml =2|0〉. This state cannot be reached by

hopping from |4 F〉 but only by the Coulomb interaction, ˜U ,
with c+

ml =2,kc+
ml =0c+

ml =1|0〉, so HC in (6) can be re-written as:

HC = U0c†
1c†

2c2c1 + U1c†
0c†

2c2c1 + U2c†
0c†

1c1c0

+ Ũ(c†
0c†

1c2c−1 + c†
−1c†

2c1c0) + · · · (7)

where the remaining terms can be neglected as they do not
contribute.

As we said before, to gain a prediction for the CK
three-hole line shape the quantity we are interested in is the
interacting three-hole Green function which is in this case:

�(z) = 〈4 F | 1

z − H
|4 F〉. (8)

For ˜U = 0 we found an approximate solution of (5)
which is valid for all cases where the final three-hole state is

a monodeterminantal one:

�(z) = 1

z − 3ε0 − W − ∑

i,k
V 2

k
z−2ε0−εk −Ui −4

∑

p ×Xp

(9)

where X = V 2
p

z−ε0−εk −εp−3�(z−εk −εp)
. In this expression W =

∑2
i=0 Ui and the Ui (i = 0, 1, 2) are respectively the three-

and two-hole Coulomb interaction, i.e. HC |4 F〉 = W |4 F〉 and
HC |i, k〉 = Ui |i, k〉. �(z) = ∑

k V 2
k /(z − εk) is the self-

energy, Vk and Vp are the hopping terms and ε0 is the band
center. In the narrow-band limit involving a single k-state, (9)
is equal to the exact solution of the problem.

As a test-bed we consider an application to a rectangular
valence band case: the Anderson model parameters ε0, εk

and Vk are chosen in such a way that −(1/π) Im[G(z)] =
θ(a − |z|)/2a with 2a the bandwidth. The results of this
calculations for different Ui are shown in figure 1 together with
a comparison with the exact numerical solution of the integral
equation obtained by taking a finite number N of k-states. In
particular figure 1 has been obtained with N = 24.

As one can see, the approximate solution cannot be
distinguished from the exact one. As expected, we found many
analogies with the two-hole resonances. From figure 1 it is
evident that increasing the two-hole Coulomb interactions, or
else going from panels (a) to (f), we recollect all the shape
phenomenology of the basic form of the Cini–Sawatzky theory.
The spectra in fact remain band-like when U/a � 1 but
the line shape is progressively distorted with increasing U/a
(panel (b)) and for U/a � 1 (panel (e) and (f)) split-off two-
hole resonances develop. The intermediate cases (panels (c)
and (d)) instead show new features and, besides the distorted
continuum, one can have a non-split-off two-hole resonance
around ω ∼ U . The two-hole resonances are not sharp but
rather smeared out and their width is of the order of 2a. This
is due to the bound hole that makes virtual trips in the valence
band. All spectra are dominated by a quasi-atomic three-hole
resonance, while the two-hole features show rather small and
unequal intensity in comparison.

For ˜U �= 0 instead �(z) is obtained as [G ⊗ P](z)
where ⊗ stems from a convolution product, G is the single-
particle Green function and P is the interacting two-hole Green
function:

P(z) = 1

P−1
0 (z) − Ũ 2 P0(z)

(10)

while P0(z) = [G ⊗ G](z) is the non-interacting one. Figure 2
shows the interacting three-hole Green function calculated for
different values of Ui .

As for the Ũ = 0 case, also this time we found
in the calculated spectra many analogies with the two-hole
phenomenology of the Cini–Sawatzky theory, but for Ũ �=
0 also new interesting features arise. It is found in fact
that the presence of a non-vanishing Ũ acts only on one
of the three Ui , U2 and this effect is equivalent to a sort
of dynamical renormalization of U2. Physically this was
due to the possibility of multiple scattering of the two holes
with ml = 0, 1 between the states c+

ml =2,kc+
ml =−1c+

ml =2|0〉 and

c+
ml =2,kc+

ml =0c+
ml =1|0〉, which makes U2 behave as ˜U 2/z for

3
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Figure 1. Each panel displays the comparison between the exact (solid line) and the approximate (dashed line)
ρ(ω) = −(1/π)Im[�(ω + i0+)]. The first one is obtained solving numerically the equation (5) for a number of k-states N = 24. The latter
instead has been reached by evaluating equation (9). All reported patterns have been evaluated in the case of a rectangular band for different
values of the Coulomb parameters Ui : (a) U0 = U1 = U2 = 0; (b) U0 = 0.4,U1 = U2 = 0.8; (c) U0 = U1 = U2 = 1; (d) U0 = U1 = 1.5,
U2 = 3; (e) U0 = U1 = U2 = 4; (f) U0 = 5, U1 = 8, U2 = 11. The values of U and ω are in units of a.

Figure 2. Each panel displays the plot of ρ(ω) = −(1/π) Im[�(ω + i0+)] as obtained from the numerical solution of equation (5) in the case
of a rectangular band. All the showed pattern are calculated for different values of the Coulomb parameters Ui and increasing Ũ .
(a) U0 = U1 = U2 = 0; (b) U0 = U1 = 1.5, U2 = 3; (c) U0 = U1 = U2 = 4; (d) U0 = 5, U1 = 8, U2 = 11. The values of U and ω are in
units of a.

large z. This explains the splitting of the resonance at about
U2 in two peaks centered at energies ∼ U2 ± |Ũ |.

The results for the exactly solvable model U0 = U1 =
U2 = 0 and Ũ �= 0 are shown in panel (a). Panel (b.1) (Ũ = 0)
exhibits a spectrum with a split-off three-hole peak at energy
∼ W and a distorted continuum, but with increasing Ũ well
defined two-hole structures start to develop. They eventually
split off from the top and the bottom of the continuum as in
panels (b.2) and (b.3). The same behavior is observed for
U0 = U1 = U2 = 4 (panel (c)), where the only difference
is the fact that the continuum is completely dominated by the
degenerate two-hole resonance. The effect of the dynamical
renormalization of U2 is evident in the strong coupling limit
which is shown in panel (d). Indeed, the two-hole resonances
at U0 and U1 are not affected by Ũ while the one at U2 splits
into a double resonance at energies ∼U2 ±|Ũ |, see panels (d.2)
and (d.3).

A direct consequence of the Pauli exclusion principle is
the complete lack of sensitivity of the three-hole resonance to
the strength of Ũ . This is due to the fact that the scattering
(mli , ml j ) = (0, 1) ↔ (2,−1) is forbidden in the presence of
a hole with ml = 2 on the local site.

4. Results and conclusions

Until today the field of CK preceded Auger satellites was
theoretically quite undiscovered and experimentally neglected
because of the reputation of this kind of transition being a
mere background. This work clearly shows that CK preceded
Auger satellites are instead a real mine of information about
strongly correlated materials because they give us the unique
opportunity to characterize the system by measuring what
happens when a strongly correlated system responds to a strong
local perturbation. The line shape of these processes in fact
contains information on three-hole multiplet states of the atom
and on the two-hole multiplets that result when one of the holes
explores the surroundings. The two-hole multiplet structures
differ widely in shape, intensities and position from those
of the Auger transitions leading to two valence holes. For
instance peaks corresponding to forbidden Auger transitions
can be prominent in CK satellites. Moreover, the two-hole
states displayed in figures 1 and 2 have a broadening of the
order of the bandwidth.

To compare the above results with experiment, more
modeling and computational work is needed and it is still

4
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under way. Here we have tried to address some simpler
aspects of the theoretical problems that CK transitions
pose, in order to prepare the ground for a future extended
theory. In particular, the extension to open bands along
the lines of [11] and [12] is a challenging task for future
research.
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